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A nponlinear stochastic fourth-order conserved growth equation oh/dt=—v,V*h + A,VX(Vh)?
+X13V(VA)3+ 7 has been studied analytically, using the perturbative dynamical renormalization group ap-
proach. One-loop calculation generates long-wavelength scaling properties of the known Edwards-Wilkinson
universality class which has the corresponding equation dh/dt=v,V?h+ 7. Our result agrees with the recent
numerical result of Kim and Das Sarma (unpublished) based on direct numerical integration. A two-loop
calculation validates our conclusion, and we argue that our result holds to all orders in perturbative expansion.

PACS number(s): 05.40.+j, 05.70.Ln, 81.10.Bk, 81.15.Ef

Considerable progress in our understanding of nonequilib-
rium surface growth phenomenon has been achieved in the
last ten years by using coarse-grained continuum partial dif-
ferential equations which describe the temporal develop-
ments of long-wavelength fluctuations in the local surface
height as matter is added to the growing interface from out-
side [1). In particular, kinetic roughening of growing inter-
faces due to the shot noise inherently present in the incident
flux may be classified into various universality classes (in the
renormalization group—critical phenomena sense) in accor-
dance with the applicability of various continuum equations
in determining the critical exponents of the growth dynam-
ics. One type of continuum growth equation has attracted
much recent attention because of its possible relevance to the
molecular beam epitaxial growth process. This is the con-
served growth equation with nonconserved noise where after
deposition the mass and the volume of the deposit remain
conserved and, consequently, growth must obey a current
continuity equation of the type [2]

oh

where h(x,t) is the dynamical surface height fluctuation at
time ¢ above the substrate point x, j is the surface particle
current, V is the divergence operator along the substrate (i.e.,
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V=g/dx), and 7(x,t) is the nonconserved random shot
noise (in both space and time) associated with the deposition
flux. (We have subtracted out the uniform growth part of the
growing interface concentrating entirely on the fluctuations.)
Expressing the current j in terms of a leading-order gradient
expansion consistent with all the symmetries of the problem
we arrive [2] at the following conserved continuum growth
equation:

oh

E=V2V2h—V4V4h+)\22V2(Vh)2+)\13V(Vh)3+ n. (2)

When v, # 0, clearly it dominates the long-wavelength criti-
cal properties of the growth process, and all the other terms
(i.e., v4,N23,N13) in Eq. (2) are irrelevant from the renormal-
ization group viewpoint. The resulting equation (i.e., v, # 0,
but v,=A»n=A13=0) in Eq. (2) is the Edwards-Wilkinson
(EW) equation [3], which has been well studied and, being
linear, is easy to solve.

Our interest in this paper is studying the dynamical criti-
cal properties of the fourth-order conserved growth con-
tinuum equation obtained by putting v,=0 in Eq. (2):

oh

§= - V4V4h+)\22V2(Vh)2+)\13V(Vh)3+ n. (3)
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FIG. 1. The relevant irreducible self-energy
+ ko (k,0) + 2 ko (k0 } , corrections for the \,,V2(Vh)? nonlinearity in
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The relevance of the situation with »,=0 (i.e., no EW term) h(k,0)=Go(k,w) n(k,w)+\pk*Go(k,w)
to surface diffusion driven epitaxial growth in a chemical
ponding cnvirqnmcnt has been muf:h discussed and debated x f f q- (k—Q)h(q,w,)
in the recent literature. Several discrete conserved growth
models, which mimic aspects of molecular beam epitaxy, are a4 q do
known to have vanishing (or, in some cases, almost- Xh(|k—q|,0— wq)-ﬁ .i_i i (4)
vanishing) values of v,, making Eq. (3) the leading-order (2m)" 27
conserved continuum growth equation. We do not further
discuss in this paper the motivation and rationale for putting  where
v, =0 because we have nothing to add to the existing litera-
ture. In the rest of this paper we present theoretical results for Golk,@)=(vek*—iw) . (5)

the dynamical critical properties of Eq. (3). Our results are
based on both one-loop and two-loop dynamical renormal-
ization group (DRG) calculations for both the nonlinearities
in Eq. (3). The motivation for our DRG analysis comes from
the recent direct numerical integration study of Eq. (3) car-
ried out by Kim and Das Sarma [4], who found the unantici-
pated and seemingly surprising result that while the \,, non-
linearity produces critical growth exponents consistent with
an earlier DRG analysis [2] (as well as Flory-type dimen-
sional arguments [5]) of the V2(Vh)? nonlinearity, the
A13V(Vh)? nonlinearity produces precisely the EW expo-
nents consistent with the V24 linear term and totally incon-
sistent with a Flory-type dimensional scaling analysis [2].
Since the V(V4)? nonlinearity is the most relevant term in
Eq. (3), as can be easily verified by a power-counting analy-
sis of the three conserved fourth-order terms, the fact that it
belongs to the linear V24 EW universality class is obviously
of considerable significance. In particular, this implies that
conserved epitaxial growth (i.e., no evaporation, no over-
hangs or vacancies) generically belongs to EW universality
independent of whether v,=0 or not (except in the very
special circumstances of v, and A3 both being zero). In this
paper we derive this potentially important result of Kim and
Das Sarma [4] based on what we believe to be essentially
exact DRG arguments.

We first consider the \;3=0 case when Eq. (3) in Fourier
space can be written as

The one-loop DRG calculation for the V#(V4)? nonlinearity
has been carried out by Lai and Das Sarma [2] with the
dynamical critical exponents z, «, and B being given by
z=(8+d)/3, a=(4—d)/3, and B=(4—d)/(8+d), where
d is the substrate dimension. One important feature of the
lowest-order calculation is that there is no vertex correction
to the nonlinearity \,, because the leading-order vertex dia-
grams exactly cancel out. Similarly, the noise remains un-
renormalized because all corrections to the noise propagator
are higher orders in &, and are therefore irrelevant. While the
nonrenormalization of the noise spectrum is a generic feature
of all conserved growth models to all orders in perturbation
theory (irrespective of whether the noise is nonconserved, as
it is in our case, or not, as in [6]), the nonrenormalization of
the “interaction” term \,, is a more interesting finding, be-
cause, in general, one expects perturbation corrections to the
vertex function unless there is a symmetry in the problem.
While the leading-order vertex correction explicitly vanishes,
a question naturally arises whether this is valid to all orders
in perturbation theory. There have been arguments both in
favor of vertex renormalization vanishing to all orders [2,6]
and against it [5,7]. We, therefore, carried out a two-loop
DRG calculation of Eq. (4). We find that the two-loop critical
exponents for the \,, nonlinearity remain the same as in [2]
in the one-loop order. Our two-loop calculation (Fig. 1)
clearly supports the view [8] that the one-loop results of Lai
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and Das Sarma for the X ,,V?(Vh)? nonlinearity are valid to
all orders in the perturbative DRG theory. We believe that the
reason for the nonrenormalization of \,, is the exact sym-
metry discovered in Ref. [6], which acts as a pseudo-
Galilean invariance making the hyperscaling relation
a+z=4 exact.

We now turn to the situation A3 # 0 in Eq. (3). We now
take AN,,=0 without any loss of generality since
N3V (Vh)3 is more relevant than A ,V2(V k)2, Dimensional
analysis of Eq. (3) with A3 # 0 gives [2] z=(4+4d)/2;
a=(4—d)/4, and B=(4—d)/2(4+d). The corresponding
Fourier space equation [A 3 # 0, A»=0 in Eq. (3)] is given
by

h(k,w)=G(k,w) n(k,0)+\;3Go(k,0)f(k,0), (6)
where
dk’ doy dK' dog o
Xh(|k—K'|)h(k")R(|K' —K"]), (7

with
g(kk',K')=[k-(k—k')]J[K"- (k' —K")]. (8)

The self-energy diagrams renormalizing the bare propagator
Go(k,w)=(vsk*—iw) ™! up to two-loop orders are shown in
Fig. 2. The leading-order correction comes from the con-
tracted Hartree diagrams in the one-loop order [Fig. 2(a)]
which lead to the following one-loop correction to the bare
coupling constant v4:

DNy 1 S, d+2
vi k> (2m)? d

f dk’k"'_3}, )

1_/42 V4I:1_

and the corresponding renormalized propagator G(k,0) is
given up to O(\3) by

G(k,0)=(vek*) ™1

:[V“kb D:;B (2S;)d(d22)k2f dk'k”H] |
=[— vk?+ v k7L, (10)
where
b= ——Z?zlf)’fi d—Z—z— kK473, (11)
In Egs. (9)-(11),
27Td/2
MR
2

and D is the strength of the white noise # in Eq. (3), i.e.,
(n(1)7(2))=2D &%(x,— %) 8(¢;— t).

The infrared divergent integral over k' is handled by the
usual DRG procedure. The most striking result, which is al-
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FIG. 2. One- and two-loop order self-energy corrections for the
A 13V (V k)3 nonlinearity: (a) one-loop calculation; (b) two-loop cal-
culation (only relevant irreducible graphs are shown).

ready apparent at this one-loop order, is the appearance of
the more relevant k% term renormalizing the higher-order
k* term of the bare propagator. Thus the long-wavelength
critical properties of the V(V4)? nonlinearity are given by
the exact (k—0) propagator:

G(k,0)=[—1,k*]"", (12)

which, of course, has identical singular properties as the EW
propagator [3] corresponding to the v,k* term in Eq. (2):
Gew(k,0)=[—v,k*]"'. We conclude, therefore, in agree-
ment with Ref. [4] that the most relevant fourth-order con-
served nonlinearity in Eq. (3), i.e., A\;3V(V£)>, belongs to
the EW universality class with the dynamical critical expo-
nents given by z=2, a=(2—d)/2; B=(2—d)/4. 1t is obvi-
ous that this one-loop result is, in fact, exact to all orders
because each Hartree contraction [cf. Fig. 2(a)] would nec-
essarily generate a k2 term in the propagator upon renormal-
ization, and all higher-order corrections are less relevant in
the renormalization group sense than the Hartree self-energy
correction. An explicit analysis of the two-loop O()\%) dia-
grams [Fig. 2(b)] manifestly establishes this rather self-
evident fact. For the sake of completeness we mention that
the noise spectrum remains unrenormalized exactly the same
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way as it does for the \,,V2(V k)? nonlinearity, and the ver-
tex correction terms to the A3 nonlinearity, which are tech-
nically nonzero, are all higher-order corrections and are ir-
relevant for determining the critical exponents. The
dynamical critical exponents of Eq. (3) are, therefore, the
same as the EW exponents.

We conclude by mentioning a number of salient features
of this rather simple but striking result. First, the Flory-type
dimensional analysis fails completely for the V(V4)> non-
linearity because the leading-order Hartree diagrams renor-
malize the divergent critical properties of the model. Second,
the Hamiltonian H,~ [d%c(Vh)* produces the V(Vh)3
nonlinearity through the nonequilibrium Langevin equation
formalism and a simple contraction argument suggests that
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the critical properties of H, should be identical to the Gauss-
ian model defined by the Hamiltonian H,~ [d%x(Vh)?
which, of course, leads to the EW growth equation in the
nonequilibrium Langevin formalism. Finally, EW universal-
ity predicts smooth growth for the physical d=2 interface,
which implies that epitaxial growth for real surfaces may
very well be smooth independent of whether v,=0 or not as
long as conserved growth conditions (i.e., no evaporation or
defect formation) apply. This, as has already been noted [4],
by Kim and Das Sarma, has obvious technological implica-
tions.

We thank Dr. Jin-Min Kim for discussions. This work is
supported by the United States Office of Naval Research
(U.S. ONR).
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